Abstract

The sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20kHz and liquid bulk temperature of 30°C in the following range of experimental conditions: EP concentration 250–1250μg/L, ultrasound (US) density 20–60W/L, reaction time up to 120min, initial pH 3–8 and sodium persulfate 0–100mg/L, either in ultrapure water or secondary treated wastewater.A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration)×(US density), (EP concentration)×(pHo) and (EP concentration)×(time).Experiments at an increased EP concentration of 3.5mg/L were also performed to identify degradation by-products. LC–TOF–MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call