Abstract

Advanced oxidation processes (AOPs) for water and wastewater treatment are often handicapped by their inability to completely eliminate total organic carbon (TOC). In order to explore the capability of the combination of ultrasonic irradiation with ozone for the rapid removal of TOC, we examined the degradation rates of dissolved phenol (C6H5OH) in water with high-frequency ultrasound over the range of 200-1000 kHz, with ozone and with the combined application of sonication and ozonation. When ozone and ultrasound are applied simultaneously, a pronounced synergistic effect is observed that leads to the complete and rapid elimination of TOC at enhanced reaction rates. At longer reaction times, phenol oxidation by 03 leads to oxalate and formate, which accounts for the majority of the residual TOC. However, the combination of US (ultrasound) and ozone together readily oxidizes HCO2- and C2O4(2-) to CO2 while they prove to be relatively resistant to further oxidation to CO2 by O3 alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.