Abstract

BackgroundUn-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol–gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV–visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated.ResultsThe results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10-2 min−1.ConclusionsThe high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.Electronic supplementary materialThe online version of this article (doi:10.1186/s40201-016-0242-2) contains supplementary material, which is available to authorized users.

Highlights

  • Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol–gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV–visible diffuse reflectance spectra techniques

  • Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol–gel method and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX) and UV–visible diffuse reflectance spectra (UV-vis DRS) techniques

  • In this study, a simple sol-gel method was used to synthesize of un-doped and N-dope TiO2 for activity enhancement of sonolysis and sonocatalysis processes

Read more

Summary

Introduction

Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol–gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV–visible diffuse reflectance spectra techniques. Enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. As part of natural organic matters, have been a major issue in water treatment plants due to their non-biodegradability and their water-soluble formation [1, 2]. These substances can affect the water quality such as odor, taste and color. Portion of these substances are removed from raw water by conventional methods such. The presence of humic substances in water may reduce the efficiency of water treatment processes when membranes or microporous adsorbents are applied

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call