Abstract

Chemodynamic therapy (CDT) is an emerging targeted treatment technique for tumors via the generation of highly cytotoxic hydroxyl radical (·OH) governed by tumor microenvironment-assisted Fenton reaction. Despite high effectiveness, it faces limitations like low reaction efficiency and limited endogenous H2 O2 , compromising its therapeutic efficacy. This study reports a novel platform with enhanced CDT performance by in situ sono-activated cascade Fenton reaction. A piezoelectric g-C3 N4 (Au-Fe-g-C3 N4 ) nanosheet is developed via sono-activated synergistic effect/H2 O2 self-supply mediated cascade Fenton reaction, realizing in situ ultrasound activated cascade Fenton reaction kinetics by synergistic modulation of electron-hole separation. The nanosheets consist of piezoelectric g-C3 N4 nanosheet oxidizing H2 O to highly reactive H2 O2 from the valence band, Fe3+ /Fe2+ cycling activated by conduction band to generate ·OH, and Au nanoparticles that lower the bandgap and further adopt electrons to generate more 1 O2 , resulting in improved CDT and sonodynamic therapy (SDT). Moreover, the Au-Fe-g-C3 N4 nanosheet is further modified by the targeted peptide to obtain P-Au-Fe-g-C3 N4 , which inhibits tumor growth in vivo effectively by generating reactive oxygen species (ROS). These results demonstrated that the sono-activated modulation translates into a high-efficiency CDT with a synergistic effect using SDT for improved anti-tumor therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.