Abstract

For the first time, the inactivation of Microcystis aeruginosa using sono-Fenton process at low frequency high intensity (20 kHz, 0.42 W/mL) and high frequency low intensity (800 kHz, 0.07 W/mL) was investigated, respectively. 20 kHz sono-Fenton treatment successfully reduced cyanobacterial cell number from 4.19 × 106 cells/mL to 0.45 × 106 cells/mL within 5 min treatment. Alternatively, efficient performance of 800 kHz sono-Fenton process was observed to decrease Microcystis cell number to 2.33 × 106 cells/mL after 5 min inactivation, with lower energy cost. It was found that powerful 20 kHz sonication induced pore formation on the cell wall, leading to extracellular damage, while 800 kHz irradiation with low intensity triggered intracellular uptake of chemicals, suggesting endocytosis effects. Furthermore, sono-Fenton Processes were found to be affected by the concentrations of Fenton’s reagent, and pre-sonication time. Although solo Fenton treatment released microcystins in water, the degradation of microcystin-LR were achieved using 20 and 800 kHz sono-Fenton processes, respectively. The results of this work showed that severe extracellular oxidation is the vital inactivation mechanism of 20 kHz sono-Fenton process, while the internal oxidation caused by intracellularly delivered Fenton reagents is suggested to be the main cause of 800 kHz sono-Fenton inactivation, leading to much lower energy cost. This work provides alternative methods to control harmful cyanobacteria in water towards effective treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.