Abstract

Chen M. and et al. have solved an open problem related to rank equalities for the sum of finitely many idempotent matrices using the Gaussian elimination method in [Chen M. and et al., On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications, The Scientific World Journal, 2014]. In this work, it is obtained a similar rank equality for the sum of finitely many involutive matices and derived some results from this equality

Highlights

  • solved an open problem related to rank equalities for the sum

  • On the open problem related to rank equalities for the sum

  • Chen M. et al On the open problem related to rank equalities for the sum

Read more

Summary

SONLU TANE İNVOLUTİF MATRİSİN TOPLAMININ RANKI ÜZERİNE BİR ÇALIŞMA

Sonlu tane idempotent matrisin toplamı için rank eşitliği ile ilgili açık bir problem Gauss eliminasyon yöntemi ile Chen M. ve arkadaşları tarafından çözülmüştür [Chen M. et al On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications, The Scientific World Journal, 2014]. Bu çalışmada sonlu tane involutif matrisin toplamı için benzer bir rank eşitliği elde edilmekte ve bu eşitlikten de bazı sonuçlar türetilmektedir. Anahtar Kelimeler: idempotent matris; involutif matris; rank. Sakarya University, Faculty of Arts and Sciences, Department of Mathematics, Sakarya, Turkey

Sonlu Tane İnvolutif Matrisin Toplamının Rankı Üzerine Bir Çalışma
In Y n
Mk olmak üzere

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.