Abstract

In this paper, band gaps for two-dimensional phononic crystals consisting of hollow square water columns immersed in a mercury host are investigated by plane-wave-expansion (PWE) method, in which cross sections of the scattering objects are hollow-square and hollow water columns are arranged in simple lattices (square, and triangular lattices). In order to regulate band gaps, we alter inner side lengths of hollow-square column, and change the filling ratio at the same time. From the results, It can be found that the band gap width and the number of the bad gaps can be changed by lattice shapes and corresponding filling fraction. This could be very useful in the design of phononic crystals band gaps and frequency filtering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.