Abstract

Laboratory measurements of the attenuation and velocity dispersion of compressional and shear waves at appropriate frequencies, pressures, and temperatures can aid interpretation of seismic and well-log surveys as well as indicate absorption mechanisms in rocks. Construction and calibration of resonant-bar equipment was used to measure velocities and attenuations of standing shear and extensional waves in copper-jacketed right cylinders of rocks ([Formula: see text] in length, [Formula: see text] in diameter) in the sonic frequency range and at differential pressures up to [Formula: see text]. We also measured ultrasonic velocities and attenuations of compressional and shear waves in [Formula: see text]-diameter samples of the rocks at identical pressures. Extensional-mode velocities determined from the resonant bar are systematically too low, yielding unreliable Poisson’s ratios. Poisson’s ratios determined from the ultrasonic data are frequency corrected and used to calculate thesonic-frequency compressional-wave velocities and attenuations from the shear- and extensional-mode data. We calculate the bulk-modulus loss. The accuracies of attenuation data (expressed as [Formula: see text], where [Formula: see text] is the quality factor) are [Formula: see text] for compressional and shear waves at ultrasonic frequency, [Formula: see text] for shear waves, and [Formula: see text] for compressional waves at sonic frequency. Example sonic-frequency data show that the energy absorption in a limestone is small ([Formula: see text] greater than 200 and stress independent) and is primarily due to poroelasticity, whereas that in the two sandstones is variable in magnitude ([Formula: see text] ranges from less than 50 to greater than 300, at reservoir pressures) and arises from a combination of poroelasticity and viscoelasticity. A graph of compressional-wave attenuation versus compressional-wave velocity at reservoir pressures differentiates high-permeability ([Formula: see text], [Formula: see text]) brine-saturated sandstones from low-permeability ([Formula: see text], [Formula: see text]) sandstones and shales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.