Abstract

Borehole sonic waveforms are commonly acquired to produce logs of subsurface compressional and shear wave velocities. To this purpose, modern borehole sonic tools are usually equipped with various types of acoustic sources, i.e., monopole and dipole sources. While the dipole source has been specifically developed for measuring shear wave velocities, we found that the dipole source has an advantage over the monopole source when determining compressional wave velocities in a very slow formation consisting of unconsolidated sands with a porosity of about 35% and a shear wave velocity of about 465 m/s. In this formation, the recorded compressional refracted waves suffer from interference with another wavefield component identified as a leaky P‐wave, which hampers the determination of compressional wave velocities in the sands. For the dipole source, separation of the compressional refracted wave from the recorded waveforms is accomplished through bandpass filtering since the wavefield components appear as two distinctly separate contributions to the frequency spectrum: a compressional refracted wave centered at a frequency of 6.5 kHz and a leaky P‐wave centered at 1.3 kHz. For the monopole source, the frequency spectra of the various waveform components have considerable overlap. It is therefore not obvious what passband to choose to separate the compressional refracted wave from the monopole waveforms. The compressional wave velocity obtained for the sands from the dipole compressional refracted wave is about 2150 m/s. Phase velocities obtained for the dispersive leaky P‐wave excited by the dipole source range from 1800 m/s at 1.0 kHz to 1630 m/s at 1.6 kHz. It appears that the dipole source has an advantage over the monopole source for the data recorded in this very slow formation when separating the compressional refracted wave from the recorded waveforms to determine formation compressional wave velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call