Abstract

Adventitial cells have been suggested to contribute to neointima formation, but the functional relevance and the responsible signalling pathways are largely unknown. Sonic hedgehog (Shh) is a regulator of vasculogenesis and promotes angiogenesis in the adult. Here we show that proliferation of vascular smooth muscle cells (SMC) after wire-induced injury in C57BL/6 mice is preceded by proliferation of adventitial fibroblasts. Simultaneously, the expression of Shh and its downstream signalling protein smoothened (SMO) were robustly increased within injured arteries. In vitro, combined stimulation with Shh and platelet-derived growth factor (PDGF)-BB strongly induced proliferation and migration of human adventitial fibroblasts. The supernatant of these activated fibroblasts contained high levels of interleukin-6 and -8 and strongly induced proliferation and migration of SMC. Inhibition of SMO selectively prevented fibroblast proliferation, cytokine release, and paracrine SMC activation. Mechanistically, we found that PDGF-BB activates protein kinase A in fibroblasts and thereby induces trafficking of SMO to the plasma membrane, where it can be activated by Shh. In vivo, SMO-inhibition significantly prevented the proliferation of adventitial fibroblasts and neointima formation following wire-induced injury. The initial activation of adventitial fibroblasts is essential for the subsequent proliferation of SMC and neointima formation. We identified SMO-dependent Shh signalling as a specific process for the activation of adventitial fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.