Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Highlights
Over 20 years ago the first evidence was presented that Sonic hedgehog (Shh), an orthologue of the Drosophila Hedgehog (Hh) gene, encodes the long sought after morphogen that specifies anteroposterior pattern in developing vertebrate limbs (Riddle et al, 1993)
Tissue transplanted from the posterior margin of one chick wing bud to the anterior margin of another was shown to have the striking ability to duplicate the pattern of three digits, so that another set develop in mirror-image symmetry to the normal set
The key pieces of evidence that Shh is the polarizing morphogen are that Shh transcripts were found to be localized to the polarizing region of the chick wing bud (Figures 1a–f) and that Shh-expressing cells grafted to the anterior margin of chick wing buds can produce the same effects as grafts of the polarizing region (Riddle et al, 1993)
Summary
Specialty section: This article was submitted to Signaling, a section of the journal Frontiers in Cell and Developmental. Shh has been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Extensive work has elucidated downstream transcriptional targets of Shh signaling. It remains unclear how antero-posterior positional values are encoded and interpreted to give the particular structure appropriate to that position, for example, the type of digit. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.