Abstract

Text summarization resolves the issue of capturing essential information from a large volume of text data. Existing methods either depend on the end-to-end models or hand-crafted preprocessing steps. In this study, we propose an entity-centric summarization method which extracts named entities and produces a small graph with a dependency parser. To extract entities, we employ well-known pre-trained language models. After generating the graph, we perform the summarization by ranking entities using the harmonic centrality algorithm. Experiments illustrate that we outperform the state-of-the-art unsupervised learning baselines by improving the performance more than 10% for ROUGE-1 and more than 50% for ROUGE-2 scores. Moreover, we achieve comparable results to recent end-to-end models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.