Abstract

According to the Aufbau principle, singly occupied molecular orbitals (SOMOs) are energetically higher lying than a highest doubly occupied molecular orbital (HOMO) in the electronically ground state of radicals. However, in the last decade, SOMO–HOMO-converted species have been reported in a limited group of radicals, such as distonic anion radicals and nitroxides. In this study, SOMO–HOMO conversion was observed in triplet 2,2-difluorocyclopentane-1,3-diyl diradicals DR3F1, DR4F1, and 2-fluorocyclopentante-1,3-diyl diradical DR3HF1, which contain the anthracyl unit at the remote position. The high HOMO energy in the anthracyl moiety and the low-lying SOMO–1 due to the fluoro-substituent effect are the key to the SOMO–HOMO conversion phenomenon. Furthermore, the cation radical DR3F1+ generated through the one-electron oxidation of DR3F1 was found to be a SOMO–HOMO-converted monoradical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.