Abstract

Aerobic respiration evolved by bricolage, with modules cobbled together as microbial biochemistry coevolved with Earth's geochemistry. The mitochondrial electron transport chain represents a patchwork of respiratory modules inherited from microbial methanogenesis, iron oxidation, anoxygenic photosynthesis, and denitrification pathways, and preserves a biochemical record of Earth's redox environment over its four-billion-year history. Imprints of the anoxic early Earth are recognizable in Complex I's numerous iron-sulfur cofactors and vestigial binding sites for ferredoxin, nickel-iron, and molybdopterin, whereas the more recent advent of oxygen as a terminal electron acceptor necessitated use of heme and copper cofactors by Complex IV. Bricolage of respiratory complexes resulted in supercomplexes for improved electron transfer efficiency in some bacteria and archaea, and in many eukaryotes. Accessory subunits evolved to wrap mitochondrial supercomplexes for improved assembly and stability. Environmental microbes with 'fossil' proteins that are similar to ancestral forms of the respiratory complexes deserve further scrutiny and may reveal new insights on the evolution of aerobic respiration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.