Abstract

In this study, the relations to determining mass moments of inertia (mechanical) for different mass and mechanical inertia corresponding to geometric shapes, objects and profiles are explored. The formulas for calculating the mass moments of inertia (mechanical) for various bodies (various geometrical forms), to certain major axis indicated (as the axis of calculation) are presented. The total mass M of the body is used to determine the mass moment of inertia (mechanical). In the first part of the paper, an original method for determining the mass moment of inertia (mechanical) of the flywheel is presented. Mass moment of inertia (the whole mechanism) reduced at the crank (reduced to the element leader) consists in a constant mass inertia moment and one variable, to which we may include an additional mass moment of inertia flywheel, which aims to reduce the degree of unevenness of the mechanism and the default machine. The more the mass moment of inertia of the flywheel is increased the more the unevenness decreased and dynamic functioning of the mechanism is improved. Engineering optimization of these values can be realized through new relationships presented on the second paragraph of the article. Determining of the mass moment of inertia of the flywheel with the new method proposed is also based on the total kinetic energy conservation.

Highlights

  • Determination of mechanical moments of inertia is becoming increasingly important in modern industrial design and mechanical systems

  • In this paper the authors aim initial to reminder the relations to determining mass moments of inertia for different mass and mechanical inertia corresponding to geometric shapes, objects and profiles

  • The second part of this paper provides an overview of the equations for determining the mechanical mass moments of inertia

Read more

Summary

Introduction

Determination of mechanical moments of inertia (mass) is becoming increasingly important in modern industrial design and mechanical systems. The mechanical mass moments of inertia (Antonescu, 2000; Pelecudi, 1985; Petrescu, 2012), of kinematic elements represent the mass to the rotational movement of these elements.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.