Abstract
Measurement error can have a significant impact on measures of inequality. Using a fairly flexible parametric specification of an independent multiplicative measurement error (IMME) model we explore the relationship between changes in the variance of measurement error, for a given mean of measurement error, on the Gini Coefficient. While the measured Gini is greater than the true Gini, the difference decreases as the variance of measurement error decreases. Copulas are used to relax the assumption of independence of measurement error and true income. In this case the measured Gini can be larger or smaller than the true Gini, depending on the correlation between true income and measurement error. Using the same approach with simulations the effect of a different distribution of measurement error is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.