Abstract

This paper is concerned with two variants of the reverse selective center location problems on tree graphs under the Hamming and Chebyshev cost norms in which the customers are existing on a selective subset of the vertices of the underlying tree. The first model aims to modify the edge lengths within a given modification budget until a prespecified facility location becomes as close as possible to the customer points. However, the other model wishes to change the edge lengths at the minimum total cost so that the distances between the prespecified facility and the customers satisfy a given upper bound. We develop novel combinatorial algorithms with polynomial time complexities for deriving the optimal solutions of the problems under investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.