Abstract

Although formal hypothesis tests provide a convenient framework for displaying the statistical results of empirical comparisons, standard tests should not be used without consideration of underlying measurement error structure. As part of the validation process, predictions of individual blood lead concentrations from models with site-specific input parameters are often compared with blood lead concentrations measured in field studies that also report lead concentrations in environmental media (soil, dust, water, paint) as surrogates for exposure. Measurements of these environmental media are subject to several sources of variability, including temporal and spatial sampling, sample preparation and chemical analysis, and data entry or recording. Adjustments for measurement error must be made before statistical tests can be used to empirically compare environmental data with model predictions. This report illustrates the effect of measurement error correction using a real dataset of child blood lead concentrations for an undisclosed midwestern community. We illustrate both the apparent failure of some standard regression tests and the success of adjustment of such tests for measurement error using the SIMEX (simulation-extrapolation) procedure. This procedure adds simulated measurement error to model predictions and then subtracts the total measurement error, analogous to the method of standard additions used by analytical chemists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call