Abstract

It is widely recognized that certain structures, when subjected to static compression, may exhibit a bifurcation point, leading to the potential occurrence of a secondary equilibrium path. Also, there is a tendency of deflection increment without a bifurcation point to occur for imperfect structures. In this paper, some relatively unknown phenomena are investigated. First, it is demonstrated that in some conditions, the linear buckling mode shape may differ from the result of geometrically nonlinear analysis. Second, a mode jumping phenomenon is described as a transition from a secondary equilibrium path to an obscure one as a tertiary equilibrium path or a second bifurcation point. In this regard, some non-square plates with unsymmetric layer arrangements (in the presence of extension-bending coupling) are subjected to a uniaxial in-plane compression. By considering the geometrically linear and nonlinear problems, the bucking modes and post-buckling behaviors, e.g., the out-of-plane displacement of the plate versus the load, are obtained by ANSYS 2023 R1 software. Through a parametric analysis, the possibility of these phenomena is investigated in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.