Abstract

Consider a function [Formula: see text] of pairs of positive matrices with values in the positive matrices such that whenever [Formula: see text] and [Formula: see text] commute [Formula: see text] Our first main result gives conditions on [Formula: see text] such that [Formula: see text] for all [Formula: see text] such that [Formula: see text]. (Note that [Formula: see text] is absent from the right side of the inequality.) We give several examples of functions [Formula: see text] to which the theorem applies. Our theorem allows us to give simple proofs of the well-known logarithmic inequalities of Hiai and Petz and several new generalizations of them which involve three variables [Formula: see text] instead of just [Formula: see text] alone. The investigation of these logarithmic inequalities is closely connected with three quantum relative entropy functionals: The standard Umegaki quantum relative entropy [Formula: see text], and two others, the Donald relative entropy [Formula: see text], and the Belavkin–Stasewski relative entropy [Formula: see text]. They are known to satisfy [Formula: see text]. We prove that the Donald relative entropy provides the sharp upper bound, independent of [Formula: see text] on [Formula: see text] in a number of cases in which [Formula: see text] is homogeneous of degree [Formula: see text] in [Formula: see text] and [Formula: see text] in [Formula: see text]. We also investigate the Legendre transforms in [Formula: see text] of [Formula: see text] and [Formula: see text], and show how our results for these lead to new refinements of the Golden–Thompson inequality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call