Abstract

Abstract The Berman and Brown (1984) excess free energy model (B&B) is extremely convenient to use in modelling multicomponent solutions. However, spinodal calculations reveal that their calibration of this model for CaO-Al2O3-SiO2 produces liquation tielines that do not appear to be in agreement with experimental work. In addition, their calibration contains some strongly negative excess entropy parameters and these permit a most unusual inverted liquation field to start at approximately >2115°C, wt% (SiO2, Al2O3, CaO) = (70, 16, 14). This inverted field expands rapidly to cover most of the ternary for T > 2300°C and continues to expand at all higher temperatures. The Berman and Brown calibration for this system carries these negative excess entropies of mixing because the solution model is very strongly asymmetric as a result of the use of normal oxide mole weights in modelling the configurational entropy of mixing. A suggestion is made for a fairly natural restriction on the relative sizes of empirical models for excess versus configurational entropy. Expressions are presented for the general consolute condition (all solution models) and for the second and third partials of the B&B Gx model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.