Abstract
Abstract Some techniques are proposed for reasoning on co-inductive structures. First, we devise a sound axiomatization of (conservative extensions) of such structures, thus reducing the problem of checking whether a formula admits a co-inductive model to a first-order satisfiability test. We devise a class of structures, called regularly co-inductive, for which the axiomatization is complete (for other co-inductive structures, the proposed axiomatization is sound, but not complete). Then, we propose proof calculi for reasoning on such structures. We first show that some of the axioms mentioned above can be omitted if the inference rules are able to handle rational terms. Furthermore, under some conditions, some other axioms may be replaced by an additional inference rule that computes the solutions of fixpoint equations. Finally, we show that a stronger completeness result can be established under some additional conditions on the signature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.