Abstract
Many theorems and formulas of Lie superalgebras run quite parallel to Lie algebras, sometimes giving interesting results. So it is quite natural to extend the new concepts of Lie algebra immediately to Lie superalgebra case as the later type of algebras have wide applications in physics and related theories. Using the concept of isoclinism, Saeedi and Sheikh-Mohseni [A characterization of stem algebras in terms of central derivations, Algebr. Represent. Theory 20 (2017) 1143–1150; On [Formula: see text]-derivations of Filippov algebra, to appear in Asian-Eur. J. Math.; S. Sheikh-Mohseni, F. Saeedi and M. Badrkhani Asl, On special subalgebras of derivations of Lie algebras, Asian-Eur. J. Math. 8(2) (2015) 1550032] recently studied the central derivation of nilpotent Lie algebra with nilindex 2. The purpose of the present paper is to continue and extend the investigation to obtain some similar results for Lie superalgebras, as isoclinism in Lie superalgebra is being recently introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.