Abstract

Let $$A \in \mathbb {R}^{d \times d}$$ , $$d \ge 1$$ be a dilation matrix with integer entries and $$| \det A|=2$$ . We construct several families of compactly supported Parseval framelets associated to A having any desired number of vanishing moments. The first family has a single generator and its construction is based on refinable functions associated to Daubechies low pass filters and a theorem of Bownik. For the construction of the second family we adapt methods employed by Chui and He and Petukhov for dyadic dilations to any dilation matrix A. The third family of Parseval framelets has the additional property that we can find members of that family having any desired degree of regularity. The number of generators is $$2^d+d$$ and its construction involves some compactly supported refinable functions, the Oblique Extension Principle and a slight generalization of a theorem of Lai and Stockler. For the particular case $$d=2$$ and based on the previous construction, we present two families of compactly supported Parseval framelets with any desired number of vanishing moments and degree of regularity. None of these framelet families have been obtained by means of tensor products of lower-dimensional functions. One of the families has only two generators, whereas the other family has only three generators. Some of the generators associated with these constructions are even and therefore symmetric. All have even absolute values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.