Abstract

Results are reported on coherent monochromatic multiphoton excitation in many-level systems, which are representative for some of the basic mechanisms for atomic and molecular multiphoton processes. Numerical solutions are discussed that use the Floquet and quasi-resonant approximations in the framework of the URIMIR program package. The excitation schemes include direct three-photon excitation, two-photon excitation with diagonal coupling, Göppert-Mayer-type two-photon processes, multiphoton excitation with off-resonant inter-mediates, and practically irreversible coherent excitation into dense spectral structures. Several interesting phenomena are observed, such as nonlinear line shifts and broadenings of multi-photon resonances of relevance for multiphoton spectroscopy and almost constant intermediate population inversions, potentially useful for laser design. The accurate numerical results are compared with approximate solutions from perturbation theory, and with simple analytical solutions from Rabi-type formulae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.