Abstract

The aim of this paper is to investigate how various Riemann Hypotheses would follow only from properties of the prime numbers. To this end, we consider two classes of [Formula: see text]-functions, namely, non-principal Dirichlet and those based on cusp forms. The simplest example of the latter is based on the Ramanujan tau arithmetic function. For both classes, we prove that if a particular trigonometric series involving sums of multiplicative characters over primes is [Formula: see text], then the Euler product converges in the right half of the critical strip. When this result is combined with the functional equation, the non-trivial zeros are constrained to lie on the critical line. We argue that this [Formula: see text] growth is a consequence of the series behaving like a one-dimensional random walk. Based on these results, we obtain an equation which relates every individual non-trivial zero of the [Formula: see text]-function to a sum involving all the primes. Finally, we briefly mention important differences for principal Dirichlet [Formula: see text]-functions due to the existence of the pole at [Formula: see text], in which the Riemann [Formula: see text]-function is a particular case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.