Abstract
Rheological studies of dilute aqueous nonionic surfactant vesicle (niosome) dispersions formed mainly from hexadecyl diglycerol ether (C16G2) or sorbitan monostearate (Span 60) were performed by capillary viscometry. By variation of the ratio of C16G2, cholesterol, and a poly-24-oxyethylene cholesteryl ether (Solulan C24), vesicles with either polyhedral or mainly spherical structures can be formed. Polyhedral niosomes transform to spherical vesicles above a transition temperature of 45 °C, while cholesterol-rich spherical/tubular niosomes remain intact up to 80 °C. These changes in niosome morphology are reflected in their rheological properties. The relative viscosity (ηrel) of spherical/tubular niosome dispersions changes little with increase in temperature, while that of polyhedral niosome dispersions decreases dramatically, indicating the transformation of the vesicles to a more spherical shape. As the intrinsic viscosity, [η], of colloidal dispersions is affected not only by vesicle shape but also b...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.