Abstract
ABSTRACT In this paper, m-dimensional distribution functions with truncation invariant dependence structure are studied. Some of the properties of generalized Archimedean class of copulas under this dependence structure are presented including some results on the conditions of compatibility. It has been shown that Archimedean copula generalized as it is described by Jouini and Clemen[1] which has the truncation invariant dependence structure has to have the form of independence or Cook-Johnson copula. We also consider a multi-parameter class of copulas derived from one-parameter Archimedean copulas. It has been shown that this class has a probabilistic meaning as a connecting copula of the truncated random pair with a right truncation region on the third variable. Multi-parameter copulas generated in this paper stays in the Archimedean class. We provide formulas to compute Kendall's tau and explore the dependence behavior of this multi-parameter class through examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.