Abstract

The classical first and second Zagreb indices of a graph $G$ are defined as $M_{1}(G)=\sum _{v\in V(G)}d(v)^{2}$ and $M_{2}(G)=\sum _{e=uv\in E(G)}d(u)d(v),$ where $d(v)$ is the degree of the vertex $v$ of $G.$ Recently, Furtula et al. [‘On difference of Zagreb indices’, Discrete Appl. Math.178 (2014), 83–88] studied the difference of $M_{1}$ and $M_{2},$ and showed that this difference is closely related to the vertex-degree-based invariant $RM_{2}(G)=\sum _{e=uv\in E(G)}[d(u)-1][d(v)-1]$, the reduced second Zagreb index. In this paper, we present sharp bounds for the reduced second Zagreb index, given the matching number, independence number and vertex connectivity, and we also completely determine the extremal graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call