Abstract
Voronoi diagram is one of the most fundamental and important geometric data structures. Voronoi diagram was historically defined for a set of points on the plane. The diagram partitions the plane into regions, one per site. The region of a site s consists of all points closer to s than to any other sites on the plane. Concepts of Voronoi diagram are often attributed to Voronoi (J. Reine Angew. Math. 133 (1907) 97) and Dirichlet (J. Reine Angew. Math. 40 (1850) 209). As a result of these early works, often the name Voronoi diagram and Dirichlet tessellation is used. Due to the importance of Voronoi diagrams, it is important that algorithms are devised to compute these structures in an efficient manner. Of course, this will create new opportunities for the applicability of these data structures. Towards this end, this paper presents new results for the computation of Voronoi diagrams for a set of n points, or n disjoint circles on the plane, on a mesh with multiple broadcasting (MMB) of size n× n. The algorithm runs in O( log 2 n) time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.