Abstract
This paper considers the compound Markov binomial risk model proposed by Cossette et al. (20032004). Two discrete-time renewal (ordinary renewal and delayed renewal) risk processes associated with the compound Markov binomial risk model are analyzed. Based on the associated ordinary renewal process, a defective renewal equation for the conditional Gerber–Shiu expected discounted penalty function is obtained. The relationship between the conditional expected discounted penalty function in the ordinary renewal case and that in the delayed renewal case is then established. From these results, the conditional ultimate probability of ruin as well as the conditional joint distribution of the surplus just prior to ruin and the deficit at ruin are studied. Finally, it is shown that a modified version of the compound Markov binomial risk model is a special case of the discrete-time semi-Markov risk model introduced by Reinhard and Snoussi (20012002).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.