Abstract
Constructions are made of a T1 space which does not have a T1 completion and of a quasi-uniform space which is complete, but not strongly complete. An example relating to a completion due to Popa is given. An alternate definition for Cauchy filter, called C-filter, is examined and a construction of a C-completion is given. We discuss quasi-pseudometrics over a Tikhonov semifield RΔ. Every topological space is quasi-pseudometrizable over a suitable RΔ. It is shown that if a quasi-pseudometric space over RΔ is complete, the corresponding quasi-uniform structure is C-complete. A general method for constructing compatible quasiuniform structures is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.