Abstract

AbstractA proper edge coloring of a graph G with colors is called a cyclic interval t‐coloring if for each vertex v of G the edges incident to v are colored by consecutive colors, under the condition that color 1 is considered as consecutive to color t. We prove that a bipartite graph G of even maximum degree admits a cyclic interval ‐coloring if for every vertex v the degree satisfies either or . We also prove that every Eulerian bipartite graph G with maximum degree at most eight has a cyclic interval coloring. Some results are obtained for ‐biregular graphs, that is, bipartite graphs with the vertices in one part all having degree a and the vertices in the other part all having degree b; it has been conjectured that all these have cyclic interval colorings. We show that all (4, 7)‐biregular graphs as well as all ‐biregular () graphs have cyclic interval colorings. Finally, we prove that all complete multipartite graphs admit cyclic interval colorings; this proves a conjecture of Petrosyan and Mkhitaryan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.