Abstract

In this paper, there are two aims: one is Schauder and Sobolev estimates for the one-dimensional heat equation; the other is the stabilization of differential equations by stochastic feedback control based on discrete-time state observations. The nonhomogeneous Poisson stochastic process is used to show how knowing Schauder and Sobolev estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs. The properties of a jump process is used. The stabilization of differential equations by stochastic feedback control is based on discrete-time state observations. Firstly, the stability results of the auxiliary system is established. Secondly, by comparing it with the auxiliary system and using the continuity method, the stabilization of the original system is obtained. Both parts focus on the impact of probability theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.