Abstract

This paper is concerned with the linear dynamic theory of elastic materials with voids. First, a spatial decay estimate of an energetic measure associated with a dynamical process is established. Then, a domain of dependence inequality associated with a boundary-initial-value problem is derived and a domain of influence theorem is established. It is shown that, for a finite time, a solution corresponding to data of bounded support vanishes outside a bounded domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.