Abstract

Let Γ be the unit circle and D be the open unit disk in the complex plane, and denote the Riemann sphere by Ω. By an arc at a point ζ∈Γ we mean a continuous curve such that |z(t)| < 1 for 0 ≦ t < 1 and . A terminal subarc of an arc Λ at ζ is a subarc of the form z = z (t) (t0 ≦ t < 1), where 0 ≦ t0<1. Suppose that f(z) is a meromorphic function in D. Then A(f) denotes the set of asymptotic values of f; and if ζ∈Γ, then C(f, ζ) means the cluster set of f at ζ and is the outer angular cluster set of f at ζ (see [13]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.