Abstract

The possibility of getting a Radon–Nikodym type theorem and a Lebesgue-like decomposition for a not necessarily positive sesquilinear Ω form defined on a vector space D, with respect to a given positive form Θ defined on D, is explored. The main result consists in showing that a sesquilinear form Ω is Θ-regular, in the sense that it has a Radon–Nikodym type representation, if and only if it satisfies a sort Cauchy–Schwarz inequality whose right hand side is implemented by a positive sesquilinear form which is Θ-absolutely continuous. In the particular case where Θ is an inner product in D, this class of sesquilinear form covers all standard examples. In the case of a form defined on a dense subspace D of Hilbert space H we give a sufficient condition for the equality Ω(ξ,η)=〈Tξ|η〉, with T a closable operator, to hold on a dense subspace of H.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.