Abstract
A natural variant of Lehmer’s conjecture that the Ramanujan $$\tau $$ -function never vanishes asks whether, for any given integer $$\alpha $$ , there exist any $$n \in \mathbb {Z}^+$$ such that $$\tau (n) = \alpha $$ . A series of recent papers excludes many integers as possible values of the $$\tau $$ -function using the theory of primitive divisors of Lucas numbers, computations of integer points on curves, and congruences for $$\tau (n)$$ . We synthesize these results and methods to prove that if $$0< \left| \alpha \right| < 100$$ and $$\alpha \notin T := \{2^k, -24,-48, -70,-90, 92, -96\}$$ , then $$\tau (n) \ne \alpha $$ for all $$n > 1$$ . Moreover, if $$\alpha \in T$$ and $$\tau (n) = \alpha $$ , then n is square-free with prescribed prime factorization. Finally, we show that a strong form of the Atkin-Serre conjecture implies that $$\left| \tau (n) \right| > 100$$ for all $$n > 2$$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.