Abstract

In this paper we prove a division algebra analogue of a theorem of Jacquet and Rallis about uniqueness ofGLn(k)×GLn(k) invariant linear form on an irreducible admissible representation ofGL2n(k). We propose a conjecture about when this invariant form exists. We prove some results about self-dual representations of the invertible elements of a division algebra and of Galois groups of local fields. The Shalika model has been studied for principal series representations ofGL2(D) forDa division algebra and a conjecture made regarding its existence in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.