Abstract

In the first section of this paper we consider some functional equations which are closely connected to derivations (i.e. additive mappings with the propertyD(ab) = aD(b) + D(a)b) on Banach algebras. IfD is a derivation on some algebraA, then the equationD(a) = − aD(a−1)a holds for all invertible elementsa ∈A. It seems natural to ask whether this functional equation characterizes derivations among all additive mappings. It is too much to expect an affirmative answer to this question in arbitrary algebras, since it may happen that even in normed algebras the group of all invertible elements contains only scalar multiples of the identity. We try to answer the question above in Banach algebras, since in Banach algebras invertible elements exist in abundance. In the second section of the paper we prove some results concerning representability of quadratic forms by bilinear forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.