Abstract

This paper addresses the motion synchronisation problem in shared virtual environments in the presence of communication delays. More precisely, we consider the case of multiple users interacting with the same dynamics. Unlike the conventional synchronization, the technological attempt we are interested in pursues a more robust and better synchronization that gives an almost concurrent evolution of motions between the distributed systems in absolute time-frame (earth's time). Physically, the existence of time delay prevents immediate information exchange, which disables concurrent motions between the distributed systems. Using the delay information available, the proposed controller preserves natural local dynamics and compensate for de-synchronization error caused by mismatched initial conditions. Various robustness issues, like the delay margin or the stability boundaries computation in the space defined by the controllers' parameters are also presented. Finally, simulation tests are conducted in order to validate the considered methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.