Abstract
In this paper, we analyze the Cardy–Lewellen equation in general diagonal model. We show that in these models it takes a simple form due to some general properties of conformal field theories, like pentagon equations and OPE associativity. This implies that the Cardy–Lewellen equation has a simple form also in nonrational diagonal models. We specialize our finding to the Liouville and Toda field theories. In particular, we prove that recently conjectured defects in Toda field theory indeed satisfy the cluster equation. We also derive the Cardy–Lewellen equation in all sl(n) Toda field theories and prove that the form of boundary states found recently in sl(3) Toda field theory holds in all sl(n) theories as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.