Abstract

We introduce a notion of monotonicity of dimensions of measures. We show that the upper and lower quantization dimensions are not monotone. We give sufficient conditions in terms of so-called vanishing rates such that ν ≪ μ implies D ¯ r ( ν ) ⩽ D ¯ r ( μ ) . As an application, we determine the quantization dimension of a class of measures which are absolutely continuous w.r.t. some self-similar measure, with the corresponding Radon–Nikodym derivative bounded or unbounded. We study the set of quantization dimensions of measures which are absolutely continuous w.r.t. a given probability measure μ. We prove that the infimum on this set coincides with the lower packing dimension of μ. Furthermore, this infimum can be attained provided that the upper and lower packing dimensions of μ are equal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.