Abstract
The spontaneous magnetization of a two-dimensional lattice model can be expressed in terms of the partition function W of a system with fixed boundary spins and an extra weight dependent on the value of a particular central spin. For the superintegrable case of the chiral Potts model with cylindrical boundary conditions, W can be expressed in terms of reduced Hamiltonians H and a central spin operator S. We conjectured in a previous paper that W can be written as a determinant, similar to that of the Ising model. Here we generalize this conjecture to any Hamiltonians that satisfy a more general Onsager algebra, and give a conjecture for the elements of S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.