Abstract

Experiments were performed to determine the quantitative relation existing between action potential and resting potential of the lobster giant axon. Resting potential changes were induced by either increasing the external potassium concentration or by reducing the external calcium concentration. For either treatment the action potential amplitude is proportional to the logarithm of the resting potential minus a constant. This constant is equivalent to the minimum resting potential at which a propagated spike is possible, and is larger for depolarization in low calcium than in high potassium. Thus the change in action potential per unit change in resting potential is greater in low external calcium than in high external potassium. Analog computer solutions to the Hodgkin-Huxley equations for squid axon membrane potentials show that, if the initial conditions are properly specified, the action potential is proportional to the logarithm of the potassium potential minus a constant. The experimental results and the analog computations suggest that reducing external calcium produces changes in the invertebrate axon that cannot be accounted for solely on the basis of alterations in the potassium potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.