Abstract

Some recent studies of electron swarms in gases under the action of an electric field are introduced. The studies include a new type of continuity equation for electrons having a form in which the partial derivative of the electron density with respect to position and to time are interchanged, a method to deduce the time-of-flight and arrival-time-spectrum swarm parameters based on a Fourier-transformed Boltzmann equation, an examination of the correspondence between experimental and theoretical electron drift velocities, and an automatic technique to deduce the electron-gas molecule collision cross section from electron drift velocity data. We also briefly introduce a method for the deduction of electron collision cross sections with gas molecules having vibrational excitation cross sections greater than the elastic momentum transfer cross section by using a gas mixture technique, an integral type of method for solution of the Boltzmann equation with salient numerical stability, a quantitative analysis of the effect of Penning ionisation, and the behaviour of electron swarms under radio frequency electric fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call