Abstract

Using detailed exact results on pair-correlation functions of Z-invariant Ising models, we can write and run algorithms of polynomial complexity to obtain wavevector-dependent susceptibilities for a variety of Ising systems. Reviewing recent work we compare various periodic and quasiperiodic models, where the couplings and/or the lattice may be aperiodic, and where the Ising couplings may be either ferromagnetic, or antiferromagnetic, or of mixed sign. We present some of our results on the square-lattice fully-frustrated Ising model. Finally, we make a few remarks on our recent works on the pentagrid Ising model and on overlapping unit cells in three dimensions and how these works can be utilized once more detailed results for pair correlations in, e.g., the eight-vertex model or the chiral Potts model or even threedimensional Yang-Baxter integrable models become available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.