Abstract

Some rigorous results on discrete velocity models are briefly reviewed and their ramifications for the lattice Boltzmann equation (LBE) are discussed. In particular, issues related to thermodynamics and H-theorem of the lattice Boltzmann equation are addressed. It is argued that for the lattice Boltzmann equation satisfying the correct hydrodynamic equations, there cannot exist an H-theorem. Nevertheless, the equilibrium distribution function of the lattice Boltzmann equation can closely approximate the genuine equilibrium which minimizes the H-function of the corresponding continuous Boltzmann equation. It is also pointed out that the “equilibrium” in the LBE models is an attractor rather than a true equilibrium in the rigorous sense of H-theorem. Since there is no H-theorem to guarantee the stability of the LBE models at the attractor, the stability of the attractor can only be studied by means other than proving an H-function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.