Abstract

The process of invasion is fundamental to the study of the dynamics of ecological and epidemiological systems. Quantitatively, a crucial measure of species' invasiveness is given by the rate at which it spreads into new open environments. The so-called ''linear determinacy'' conjecture equates full nonlinear model spread rates with the spread rates computed from linearized systems with the linearization carried out around the leading edge of the invasion. A survey that accounts for recent developments in the identification of conditions under which linear determinacy gives the ``right" answer, particularly in the context of non-compact and non-cooperative systems, is the thrust of this contribution. Novel results that extend some of the research linked to some the contributions covered in this survey are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.