Abstract

The effect of electron irradiation (E=0.6-1.8 MeV) on the optical characteristics (photoluminescence, PL) of CdTe/ZnTe structures with quantum dots, QDs, was investigated in the temperature range from 4.2 to 250 K. The data on the influence of irradiation on the temperature dependence of PL intensity, energy position and PL line width, W, from QDs were obtained. The narrowing of PL band and the blue shift of the QD peak position are explained by quenching of the low energy component connected with larger QDs. A slight decrease in PL intensity for both QDs and the buffer ZnTe layer as well as a sharp drop in PL intensity for 1 ML CdTe quantum wells, QWs, and fragments accompanied by a change in the activation energy of the PL quenching is explained by the radiation defects localized near the QD interface. The obtained results show that under e-beam irradiation QDs are more stable than QWs, which is in agreement with our previous investigations.

Highlights

  • Self-organized quantum dots, QDs, are of great interest for fundamental physics, as they are related to the theoretically predicted discrete atom-like energy levels, g-shape density of states and high excitonic oscillator strength due to extremely localized exciton wave function [1]

  • A slight decrease in PL intensity for both QDs and the buffer ZnTe layer as well as a sharp drop in PL intensity for 1 ML CdTe quantum wells, QWs, and fragments accompanied by a change in the activation energy of the PL quenching is explained by the radiation defects localized near the QD interface

  • The obtained results show that under e-beam irradiation QDs are more stable than QWs, which is in agreement with our previous investigations

Read more

Summary

Eurasian Journal of Physics and Functional Materials

The effect of electron irradiation (E=0.6-1.8 MeV) on the optical characteristics (photoluminescence, PL) of CdTe/ZnTe structures with quantum dots, QDs, was investigated in the temperature range from 4.2 to 250 K. The data on the influence of irradiation on the temperature dependence of PL intensity, energy position and PL line width, W, from QDs were obtained. The narrowing of PL band and the blue shift of the QD peak position are explained by quenching of the low energy component connected with larger QDs. A slight decrease in PL intensity for both QDs and the buffer ZnTe layer as well as a sharp drop in PL intensity for 1 ML CdTe quantum wells, QWs, and fragments accompanied by a change in the activation energy of the PL quenching is explained by the radiation defects localized near the QD interface. The obtained results show that under e-beam irradiation QDs are more stable than QWs, which is in agreement with our previous investigations.

Introduction
Experimental technique
Results and discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call